The first step in industrial nitric acid production is the catalyzed oxidation of ammonia. Without a catalyst, a different reaction predominates: 4NH3(g) + 3O2(g) ⇔ 2N2(g) + 6H2O(g) When 0.0280 mol gaseous NH3 and 0.0120 mol gaseous O2 are placed in a 1.00 L container at a certain temperature, the N2 concentration at equilibrium is 3.00×10-3 M. Calculate Keq for the reaction at this temperature.

Respuesta :

Answer: The value of [tex]K_{eq}[/tex] is [tex]4.84\times 10^{-5}[/tex]

Explanation:

We are given:

Initial moles of ammonia = 0.0280 moles

Initial moles of oxygen gas = 0.0120 moles

Volume of the container = 1.00 L

Concentration of a substance is calculated by:

[tex]\text{Concentration}=\frac{\text{Number of moles}}{\text{Volume}}[/tex]

So, concentration of ammonia = [tex]\frac{0.0280}{1.00}=0.0280M[/tex]

Concentration of oxygen gas = [tex]\frac{0.0120}{1.00}=0.0120M[/tex]

The given chemical equation follows:

                  [tex]4NH_3(g)+3O_2(g)\rightleftharpoons 2N_2(g)+6H_2O(g)[/tex]

Initial:        0.0280        0.0120

At eqllm:    0.0280-4x   0.0120-3x   2x       6x

We are given:

Equilibrium concentration of nitrogen gas = [tex]3.00\times 10^{-3}M=0.003[/tex]

Evaluating the value of 'x', we get:

[tex]\Rightarrow 2x=0.003\\\\\Rightarrow x=0.0015M[/tex]

Now, equilibrium concentration of ammonia = [tex]0.0280-4x=[0.0280-(4\times 0.0015)]=0.022M[/tex]

Equilibrium concentration of oxygen gas = [tex]0.0120-3x=[0.0120-(3\times 0.0015)]=0.0075M[/tex]

Equilibrium concentration of water = [tex]6x=(6\times 0.0015)]=0.009M[/tex]

The expression of [tex]K_{eq}[/tex] for the above reaction follows:

[tex]K_{eq}=\frac{[H_2O]^6\times [N_2]^2}{[NH_3]^4\times [O_2]^3}[/tex]

Putting values in above expression, we get:

[tex]K_{eq}=\frac{(0.009)^6\times (0.003)^2}{(0.022)^4\times (0.0075)^3}\\\\K_{eq}=4.84\times 10^{-5}[/tex]

Hence, the value of [tex]K_{eq}[/tex] is [tex]4.84\times 10^{-5}[/tex]