Answer: The temperature when the volume and pressure has changed is -27.26°C
Explanation:
To calculate the temperature when pressure and volume has changed, we use the equation given by combined gas law. The equation follows:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1,V_1\text{ and }T_1[/tex] are the initial pressure, volume and temperature of the gas
[tex]P_2,V_2\text{ and }T_2[/tex] are the final pressure, volume and temperature of the gas
We are given:
[tex]P_1=725mmHg\\V_1=12L\\T_1=30.00^oC=[30+273]K=303K\\P_2=252mmHg\\V_2=28L\\T_2=?K[/tex]
Putting values in above equation, we get:
[tex]\frac{725mmHg\times 12L}{303K}=\frac{252mmHg\times 28L}{T_2}\\\\T_2=\frac{252\times 28\times 303}{725\times 12}=245.74K[/tex]
Converting this into degree Celsius, we get:
[tex]T(K)=T(^oC)+273[/tex]
[tex]245.74=T(^oC)+273\\T(^oC)=-27.26^oC[/tex]
Hence, the temperature when the volume and pressure has changed is -27.26°C