Respuesta :
Answer : The value of [tex]\Delta G_{rxn}[/tex] is -49.6 kJ/mol
Explanation :
First we have to calculate the reaction quotient.
Reaction quotient (Q) : It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.
The given balanced chemical reaction is,
[tex]ATP(aq)+H_2O(l)\rightarrow ADP(aq)+HPO_4^{2-}(aq)[/tex]
The expression for reaction quotient will be :
[tex]Q=\frac{[ADP][HPO_4^{2-}]}{[ATP]}[/tex]
In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.
Given:
[tex][ATP][/tex] = 5.0 mM
[tex][ADP][/tex] = 0.60 mM
[tex][HPO_4^{2-}][/tex] = 5.0 mM
Now put all the given values in this expression, we get
[tex]Q=\frac{(0.60)\times (5.0)}{(5.0)}=0.60mM=0.60\times 10^{-3}M[/tex]
Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex].
The formula used for [tex]\Delta G_{rxn}[/tex] is:
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction = ?
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = -30.5 kJ/mol
R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]
T = temperature = [tex]37.0^oC=273+37.0=310K[/tex]
Q = reaction quotient = [tex]0.60\times 10^{-3}[/tex]
Now put all the given values in the above formula 1, we get:
[tex]\Delta G_{rxn}=(-30.5kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (310K)\times \ln (0.60\times 10^{-3})[/tex]
[tex]\Delta G_{rxn}=-49.6kJ/mol[/tex]
Therefore, the value of [tex]\Delta G_{rxn}[/tex] is -49.6 kJ/mol