Respuesta :

Answer:

Marco's age is 7 years old

Step-by-step explanation:

Let

x ----> Marco's age

y ----> Paolo's age

we know that

[tex]x=y-8[/tex] ----> [tex]y=x+8[/tex] ----> equation A

[tex]xy=105[/tex] ----> equation B

substitute equation A in equation B

[tex]x(x+8)=105[/tex]

[tex]x^2+8x-105=0[/tex]

Solve the quadratic equation

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^2+8x-105=0[/tex]

so

[tex]a=1\\b=8\\c=-105[/tex]

substitute in the formula

[tex]x=\frac{-8(+/-)\sqrt{8^{2}-4(1)(-105)}} {2(1)}[/tex]

[tex]x=\frac{-8(+/-)\sqrt{484}} {2}[/tex]

[tex]x=\frac{-8(+/-)22} {2}[/tex]

[tex]x=\frac{-8(+)22} {2}=7[/tex]

[tex]x=\frac{-8(-)22} {2}=-15[/tex]

Remember that the solution cannot be a negative number

so

The solution is x=7

therefore

Marco's age is 7 years old