Develop expressions for the mole fraction of reacting species functions of the reaction coordinate for: A system initially containing 2 mol NH3 and 5 mol O2 and undergoing the reaction: 4NH3 (g) + 5O2 (g) ® 4NO (g) + 6 H20 (g) A system initially containing 3 mol NO2, 4 mol NH3, and 1 mol N2 and undergoing the reaction: 6NO2 (g) + 8NH3 (g) ® 7N2 (g) +12H2O (g)

Respuesta :

Answer:

Individual mole fractions of all the species of the all reaction is as follows.

(a)

[tex]y_{NH_{3}}=\frac{2+(-4)\epsilon}{7+\epsilon}[/tex]

[tex]y_{O_{2}}=\frac{5+(-5)\epsilon}{7+\epsilon}[/tex]

[tex]y_{NO}=\frac{0+(4)\epsilon}{7+\epsilon}=\frac{4\epsilon}{7+\epsilon}[/tex]

[tex]y_{H_{2}O}=\frac{0+6\epsilon}{7+\epsilon}[/tex]

(b)

[tex]y_{H_{2}S}=\frac{3+(-2)\epsilon}{8- \epsilon}[/tex]

[tex]y_{O_{2}}=\frac{5+(-3)\epsilon}{8- \epsilon}[/tex]

[tex]y_{H_{2}O}=\frac{2\epsilon}{8- \epsilon}[/tex]

[tex]y_{SO_{2}}=\frac{2\epsilon}{8- \epsilon}[/tex]

(c)

[tex]y_{NO_{2}}=\frac{3+(-6)\epsilon}{8+5\epsilon}[/tex]

[tex]y_{NH_{3}}=\frac{4+(-8)\epsilon}{8+5\epsilon}[/tex]

[tex]y_{N-{2}}=\frac{1+7\epsilon}{8+5 \epsilon}[/tex]

[tex]y_{H_{2}O}=\frac{12\epsilon}{8+5\epsilon}[/tex]

Explanation:

(a)

Initial number of moles of [tex]NH_{3}[/tex] and [tex]O_{2}[/tex] are 2 mol and 5 mol respectively.

The given chemical reaction is as follows.

[tex]4NH_{3}(g)+5O_{2}(g)\rightarrow 4NO(g)+6H_{2}O[/tex]

The stoichiometric numbers are as follows.

[tex]v_{NH_{3}}=-4[/tex]

[tex]v_{O_{2}}=-5[/tex]

[tex]v_{NO}=4[/tex]

[tex]v_{H_{2}O}=6[/tex]

The total number of moles initially present -7

[tex]\Sigma v_{i}\epsilon = (-4-5+4+6)= 1\epsilon[/tex]

The expression for the mole fraction of species"i" is as follows.

[tex]y_{i}=\frac{(n_{i_{o}})+(v_{i}\epsilon) }{n_{o}+v\epsilon}[/tex]

The individual mole fractions of all the species are as follows.

[tex]y_{NH_{3}}=\frac{2+(-4)\epsilon}{7+\epsilon}[/tex]

[tex]y_{O_{2}}=\frac{5+(-5)\epsilon}{7+\epsilon}[/tex]

[tex]y_{NO}=\frac{0+(4)\epsilon}{7+\epsilon}=\frac{4\epsilon}{7+\epsilon}[/tex]

[tex]y_{H_{2}O}=\frac{0+6\epsilon}{7+\epsilon}[/tex]

(b)

Initial number of moles of [tex]H_{2}S[/tex] and [tex]O_{2}[/tex] are 3 mol and 5 mol respectively.

The given chemical reaction is as follows.

[tex]2H_{2}S(g)+3O_{2}(g)\rightarrow 2H_{2}O(g)+2SO_{2}[/tex]

The stoichiometric numbers are as follows.

[tex]v_{H_{2}S}=-2[/tex]

[tex]v_{O_{2}}=-3[/tex]

[tex]v_{H_{2}O}=2[/tex]

[tex]v_{SO_{2}=2[/tex]

The total number of moles initially present -8

[tex]\Sigma v_{i}\epsilon = (-2-3+2+2)= - \epsilon[/tex]

The expression for the mole fraction of species"i" is as follows.

[tex]y_{i}=\frac{(n_{i_{o}})+(v_{i}\epsilon) }{n_{o}+v\epsilon}[/tex]

The individual mole fractions of all the species are as follows.

[tex]y_{H_{2}S}=\frac{3+(-2)\epsilon}{8- \epsilon}[/tex]

[tex]y_{O_{2}}=\frac{5+(-3)\epsilon}{8- \epsilon}[/tex]

[tex]y_{H_{2}O}=\frac{2\epsilon}{8- \epsilon}[/tex]

[tex]y_{SO_{2}}=\frac{2\epsilon}{8- \epsilon}[/tex]

(c)

Initial number of moles of [tex]NO_{2}[/tex], [tex]NH_{3}[/tex]and [tex]N_{2}[/tex] are 3 mol,4 mol and 1 mol respectively.

The given chemical reaction is as follows.

[tex]6NO_{2}(g)+8NH_{3}(g)\rightarrow 7N_{2}(g)+12H_{2}O[/tex]

The stoichiometric numbers are as follows.

[tex]v_{NO_{2}}=-6[/tex]

[tex]v_{NH_{3}}=-8[/tex]

[tex]v_{N_{2}}=7[/tex]

[tex]v_{H_{2}O}=12[/tex]

The total number of moles initially present -8

[tex]\Sigma v_{i}\epsilon = (-6-8+7+12)= 5 \epsilon[/tex]

The expression for the mole fraction of species"i" is as follows.

[tex]y_{i}=\frac{(n_{i_{o}})+(v_{i}\epsilon) }{n_{o}+v\epsilon}[/tex]

The individual mole fractions of all the species are as follows.

[tex]y_{NO_{2}}=\frac{3+(-6)\epsilon}{8+5\epsilon}[/tex]

[tex]y_{NH_{3}}=\frac{4+(-8)\epsilon}{8+5\epsilon}[/tex]

[tex]y_{N-{2}}=\frac{1+7\epsilon}{8+5 \epsilon}[/tex]

[tex]y_{H_{2}O}=\frac{12\epsilon}{8+5\epsilon}[/tex]