Solving for the future values of the credit card balances:
1260(1 + 0.12/12)^24 = 1599.8656571502122308900(1 + 0.18/12)^24 = 1286.55253073612259711290(1 + 0.09/12)^24 = 1543.37345291648033351200(1 + 0.16/12)^24 = 1649.0625893406018547
Adding the future balances to obtain total bill:
1599.8656571502122308 + 1286.5525307361225971 + 1543.3734529164803335 + 1649.0625893406018547 = 6078.85
Solving for the annuity A (monthly payments for each account):
1599.87 = A [(((1 + 0.12/12)^24) - 1) / (0.12/12)] A = 59.31
1286.55 = A [(((1 + 0.18/12)^24) - 1) / (0.18/12)]A = 44.93
1543.37 = A [(((1 + 0.09/12)^24) - 1) / (0.09/12)]A = 58.93
1649.06 = A [(((1 + 0.16/12)^24) - 1) / (0.16/12)]A = 58.76
Adding the annuities together to obtain the minimum monthly payment:59.31 + 44.93 + 58.93 + 58.76 = 221.93
Therefore, the minimum monthly payment is $221.93. Among the choices, the answer is D.