Respuesta :

Answer:

a. ZC = 13.5

b. ZA : AC = 2 : 1

Step-by-step explanation:

See the diagram of the triangle attached to the question.

a. [tex]ZA = \frac{2}{3} ZC[/tex] {Concurrency of median theorem}

⇒[tex]9 = \frac{2}{3} ZC[/tex] {Substituting the value of ZA which is given}

⇒ [tex]9 \times (\frac{3}{2}) = (\frac{3}{2}) \times \frac{2}{3} ZC[/tex] {Multiplying both sides with [tex]\frac{3}{2}[/tex]}

ZC = 13.5 {By simplification} (Answer)

b. We have [tex]ZA = \frac{2}{3} ZC[/tex] {Concurrency of median theorem}

⇒ [tex]ZA = \frac{2}{3} (ZA + AC)[/tex]

⇒ [tex]ZA = \frac{2}{3} ZA + \frac{2}{3} AC[/tex] {By distributive property of multiplication}

⇒ [tex](1 - \frac{2}{3})ZA = \frac{2}{3}AC[/tex]

⇒ [tex]\frac{1}{3} ZA = \frac{2}{3} AC[/tex]

⇒ [tex](3) \times\frac{1}{3} ZA = (3) \times\frac{2}{3} AC[/tex] {Multiplying both sides with 3}

⇒ ZA = 2 AC

ZA : AC = 2 : 1 (Answer)