A mass m = 0.7 kg is released from rest at the origin 0. The mass falls under the influence of gravity. When the mass reaches point A, it is a distance x below the origin 0; when the mass reaches point B it is a distance of 6 x below the origin 0. What is vB/vA?

Respuesta :

Answer:

The value of [tex]\dfrac{v_{B}}{v_{A}}=2[/tex]

Explanation:

Given that,

Mass = 0.7 kg

Height = 6

We need to calculate the velocity at point A

Using conservation of energy

[tex]-mgh-0=0-\dfrac{1}{2}mv_{A}^2[/tex]

[tex]-mgx=-\dfrac{1}{2}mv_{A}^2[/tex]

[tex]v_{A}=\sqrt{2gx}[/tex].....(I)

We need to calculate the velocity at point B

Using conservation of energy

[tex]-mgh-0=0-\dfrac{1}{2}mv_{B}^2[/tex]

[tex]-mg\times4x=-\dfrac{1}{2}mv_{B}^2[/tex]

[tex]v_{B}=\sqrt{8gx}[/tex]....(II)

We need to calculate the ratio of the velocity at point A and point B

[tex]\dfrac{v_{B}}{v_{A}}=\dfrac{\sqrt{8gx}}{\sqrt{2gx}}[/tex]

[tex]\dfrac{v_{B}}{v_{A}}=2[/tex]

Hence, The value of [tex]\dfrac{v_{B}}{v_{A}}=2[/tex]