Answer:
The value of [tex]\dfrac{v_{B}}{v_{A}}=2[/tex]
Explanation:
Given that,
Mass = 0.7 kg
Height = 6
We need to calculate the velocity at point A
Using conservation of energy
[tex]-mgh-0=0-\dfrac{1}{2}mv_{A}^2[/tex]
[tex]-mgx=-\dfrac{1}{2}mv_{A}^2[/tex]
[tex]v_{A}=\sqrt{2gx}[/tex].....(I)
We need to calculate the velocity at point B
Using conservation of energy
[tex]-mgh-0=0-\dfrac{1}{2}mv_{B}^2[/tex]
[tex]-mg\times4x=-\dfrac{1}{2}mv_{B}^2[/tex]
[tex]v_{B}=\sqrt{8gx}[/tex]....(II)
We need to calculate the ratio of the velocity at point A and point B
[tex]\dfrac{v_{B}}{v_{A}}=\dfrac{\sqrt{8gx}}{\sqrt{2gx}}[/tex]
[tex]\dfrac{v_{B}}{v_{A}}=2[/tex]
Hence, The value of [tex]\dfrac{v_{B}}{v_{A}}=2[/tex]