Answer:
[tex]y=\frac{1}{3}x^2+4x+3[/tex]
Step-by-step explanation:
we know that
The standard form of a quadratic equation is equal to
[tex]ax^{2} +bx+c[/tex]
we have
[tex]y=\frac{1}{3}(x+6)^2-9[/tex]
This is the equation of a vertical parabola written in vertex form
Expanded the quadratic equation
[tex]y=\frac{1}{3}(x^2+12x+36)-9[/tex]
Apply distributive property right side
[tex]y=\frac{1}{3}x^2+4x+12-9[/tex]
[tex]y=\frac{1}{3}x^2+4x+3[/tex] ---> quadratic equation in standard form