A cube of wood 15.0 cm on each side is tied to the bottom of a tank filled with water to a depth of 50 cm. The tension in the string is found to be 6.615 N. Please answer each of the following questions. Note: 1 atm = 1.013 x 105 Pa a) What is the density of the wood? b) What is the absolute pressure at the bottom of the tank.

Respuesta :

Answer:

(a). The density of the wood is  [tex]1479.48\times10^{2}\ Kg/m^3[/tex]

(b). The absolute pressure at the bottom of the tank is [tex]1.06200\times10^{5}\ Pa[/tex].

Explanation:

Given that,

Side of cube = 15.0 cm

Depth = 50 cm

Tension = 6.615 N

We need to calculate the volume of the wood

Using formula of volume

[tex]V = a^3[/tex]

[tex]V=(15.0\times10^{-2})^3[/tex]

[tex]V=0.003375\ m^3[/tex]

We need to calculate the density of the wood

Using buoyant force

[tex]\rho_{w}gh=mg+T[/tex]

[tex]\rho_{w}gh=\rho_{c}Vg+T[/tex]

Put the value into the formula

[tex]\rho_{c}=\dfrac{\rho_{w}gh-T}{Vg}[/tex]

Put the value into the formula

[tex]\rho_{c}=\dfrac{1000\times9.8\times50\times10^{-2}-6.615}{0.003375\times9.8}[/tex]

[tex]\rho_{c}=1479.48\times10^{2}\ Kg/m^3[/tex]

(b). We need to calculate the absolute pressure at the bottom of the tank

Using formula of absolute pressure

[tex]P=P_{atm}+\rho gh[/tex]

Put the value into the formula

[tex]P=1.013\times10^{5}+1000\times9.8\times0.5[/tex]

[tex]P=1.06200\times10^{5}\ Pa[/tex]

Hence, (a). The density of the wood is  [tex]1479.48\times10^{2}\ Kg/m^3[/tex]

(b). The absolute pressure at the bottom of the tank is [tex]1.06200\times10^{5}\ Pa[/tex].