Answer:
(-8,8)
Step-by-step explanation:
The midpoint [tex]M(x_M,y_M)[/tex] of the segment AB with endpoints [tex]A(x_A,y_A)[/tex] and [tex]B(x_B,y_B)[/tex] has coordinates
[tex]x_M=\dfrac{x_A+x_B}{2}\\ \\y_M=\dfrac{y_A+y_B}{2}[/tex]
In your case, [tex]A(-2,-6), \ M(-5,1),[/tex] then
[tex]-5=\dfrac{-2+x_B}{2}\Rightarrow -2+x_B=-10,\ x_B=-10+2=-8\\ \\1=\dfrac{-6+y_B}{2}\Rightarrow -6+y_B=2,\ y_B=2+6=8[/tex]