Which is the solution of the quadratic equation (4y – 3)2 = 72? y = StartFraction 3 + 6 StartRoot 2 EndRoot Over 4 EndFraction and y = StartFraction 3 minus 6 StartRoot 2 EndRoot Over 4 EndFraction y = StartFraction 3 + 6 StartRoot 2 EndRoot Over 4 EndFraction and y = StartFraction negative 3 minus 6 StartRoot 2 EndRoot Over 4 EndFraction y = StartFraction 9 StartRoot 2 EndRoot Over 4 EndFraction and y = StartFraction negative 3 StartRoot 2 EndRoot Over 4 EndFraction y = StartFraction 9 StartRoot 2 EndRoot Over 4 EndFraction and y = StartFraction 3 StartRoot 2 EndRoot Over 4 EndFraction

Respuesta :

Answer:

[tex]y = \frac{3 + 6\sqrt{2} }{4}[/tex] and [tex]y = \frac{3 - 6\sqrt{2} }{4}[/tex]

y = StartFraction 3 + 6 StartRoot 2 EndRoot Over 4 EndFraction and y = StartFraction 3 minus 6 StartRoot 2 EndRoot Over 4 EndFraction

Step-by-step explanation:

The given quadratic equation is (4y - 3)² = 72

We have to solve this equation for y.

Now, 4y - 3 = ± 6√2

⇒ 4y = 3 ± 6√2

[tex]y = \frac{3 + 6\sqrt{2} }{4}[/tex] and [tex]y = \frac{3 - 6\sqrt{2} }{4}[/tex]

Therefore, the solution is y = StartFraction 3 + 6 StartRoot 2 EndRoot Over 4 EndFraction and y = StartFraction 3 minus 6 StartRoot 2 EndRoot Over 4 EndFraction (Answer)

Answer:

A

Step-by-step explanation: