The fraction is [tex]\frac{6}{5}[/tex]
Let the denominator of fraction be "a"
Given that numerator of a fraction is 1 less than the denominator
numerator of a fraction = denominator - 1
So the numerator of a fraction = a - 1
Thus the required fraction is:
[tex]\frac{\text {numerator}}{\text {denominator}}=\frac{a-1}{a}[/tex]
Also given that if 4 is added to both the numerator and denominator the fraction becomes 8/4
[tex]\begin{array}{l}{\frac{\text {numerator}+4}{\text {denominator}+4}=\frac{a-1+4}{a+4}=\frac{8}{4}} \\\\ {\frac{a-1+4}{a+4}=\frac{8}{4}} \\\\ {\frac{a+3}{a+4}=2} \\\\ {a+3=2(a+4)} \\\\ {a+3=2 a+8} \\\\ {a=-5}\end{array}[/tex]
Thus the original fraction is:
[tex]\frac{\text {numerator}}{\text {denominator}}=\frac{a-1}{a}=\frac{-5-1}{-5}=\frac{-6}{-5}=\frac{6}{5}[/tex]
Thus the fraction is [tex]\frac{6}{5}[/tex]