A 325 N box moves with a constant velocity of 3.75 m/s when pushed with a force of 425 N exerted at a 35.2 angle below the horizontal. What is the coefficient of kinetic friction between the box and the floor?

Respuesta :

Answer: 0.6

Explanation:

If we draw a free body diagram of the box we will have the following:

Net force in the x-axis:

[tex]N-W-Fsin \theta=0[/tex] (1)

Net force in the y-axis:

[tex]-F_{r}+Fcos \theta=0[/tex] (2)

Where:

[tex]N[/tex] is the normal force

[tex]W=325 N[/tex] is the weight of the box

[tex]F=425 N[/tex] is the force exerted on the box

[tex]\theta=35.2\°[/tex] is the angle below the horizontal

[tex]F_{r}=\mu_{k}N[/tex] is the friction force, being [tex]\mu_{k}[/tex] the coefficient of kinetic friction

Isolating [tex]N[/tex] from (1):

[tex]N=W+Fsin \theta[/tex] (3)

Substituting (3) in (2):

[tex]-\mu_{k}(W+Fsin \theta)+Fcos \theta=0[/tex] (4)

Finding [tex]\mu_{k}[/tex]:

[tex]\mu_{k}=\frac{Fcos \theta}{W+Fsin \theta}[/tex] (5)

[tex]\mu_{k}=\frac{425 N cos (35.2\°)}{325 N+425 N sin (35.2\°)}[/tex] (6)

Finally:

[tex]\mu_{k}=0.6[/tex] (5)