Respuesta :

Answer:

Answer of 17 is ㏒([tex]x^{2}[/tex]+15x), Answer of 33 is x = 8 , Answer of 35 is x = ㏒10/㏒2 , Answer of 37 is  x = -㏒12/㏒8 and Answer of 39 is x = 5

Step-by-step explanation:

17. ㏒x + ㏒(x+15)

     Using property ㏒a + ㏒b = ㏒a×b

     ∴ ㏒x + ㏒(x+15)

        ㏒x×(x+15)

        ㏒([tex]x^{2}[/tex]+15x)

        The answer is ㏒([tex]x^{2}[/tex]+15x)

33. 2^(x-5) = 8

     2^(x-5) = 2^3

      Using property 2^a = 2^b

      Then a = b

     ∴x-5 = 3

       x = 8

      The answer is x = 8

35. 2^x = 10

    Taking log on both sides gives

     ㏒2^x = ㏒10

     x×㏒2 = ㏒10

     x = ㏒10/㏒2

    The answer is x = ㏒10/㏒2

37. 8^-x = 12

    Taking log on both sides gives

     ㏒8^-x = ㏒12

     -x×㏒8 = ㏒12

      x = -㏒12/㏒8

    The answer is  x = -㏒12/㏒8

39. 5(2^3 × x) = 8

      5(8×x) = 8

      x = 5

    The answer is x=5