Respuesta :

Answer:

[tex]GD=16\sqrt{2}\ units[/tex]

Step-by-step explanation:

we know that

The three perpendicular bisectors of the sides of a triangle meet in a single point, called the circumcenter (point G)

The circumcenter is equidistant from the vertices of the triangle

so

AG=CG=EG

step 1

Find the value of x

AG=CG

substitute the given values

[tex]7x-41=5x-19[/tex]

solve for x

[tex]7x--5x=41-19[/tex]

[tex]2x=22[/tex]

[tex]x=11[/tex]

step 2

Find the length side DC

we know that

DC=DE

Because GD is a perpendicular bisector

so

[tex]DC=28\ units[/tex]

step 3

Find the length side GD

In the right triangle GCD

Applying the Pythagorean Theorem

[tex]CG^2=GD^2+DC^2[/tex]

we have

[tex]DC=28\ units[/tex]

[tex]CG=5x-19=5(11)-19=36\ units[/tex]

substitute the values

[tex]36^2=GD^2+28^2[/tex]

[tex]GD^2=36^2-28^2[/tex]

[tex]GD^2=512[/tex]

[tex]GD=\sqrt{512}\ units[/tex]

simplify

[tex]GD=16\sqrt{2}\ units[/tex]

Answer:22.6

Step-by-step explanation:

mhm