Use a graphing utility to graph the function and the damping factor of the function in the same viewing window.
f(x) = e−3x sin(x)

Analyze the graph of the function using the method in Example 6. (Enter your answers as a comma-separated list. Use n to represent an arbitrary integer if necessary.)
y = ±e−3x touches y = e−3x sin(x) at:

y = e−3x sin(x) has x-intercepts at:

Use a graphing utility to graph the function and the damping factor of the function in the same viewing window fx e3x sinx Analyze the graph of the function usi class=

Respuesta :

Answer:

The function touches the damping factor

at x=[tex]\frac{(4n-3)\pi}{2}[/tex] and x=[tex]\frac{(4n-1)\pi}{2}[/tex]

The x-intercept of f(x) is

at x=[tex]n\pi[/tex]

Step-by-step explanation:

Given function is f(x)=[tex]e^{-3x} sin(x)[/tex] and damping factor as y=[tex]e^{-3x}[/tex] and y=[tex](-1)e^{-3x}[/tex]

To find when function touches the damping factor:

For f(x)=[tex]e^{-3x} sin(x)[/tex] and y=[tex]e^{-3x}[/tex]

Equating the both the equation,

[tex]e^{-3x} sin(x)=e^{-3x}[/tex]

[tex] sin(x)=1[/tex]

x=[tex]\frac{(4n-3)\pi}{2}[/tex]

For f(x)=[tex]e^{-3x} sin(x)[/tex] and y=[tex](-1)e^{-3x}[/tex]

Equating the both the equation,

[tex]e^{-3x} sin(x)=(-1)e^{-3x}[/tex]

[tex] sin(x)=(-1)[/tex]

x=[tex]\frac{(4n-1)\pi}{2}[/tex]

Therefore, The function touches the damping factor x=[tex]\frac{(4n-3)\pi}{2}[/tex] and x=[tex]\frac{(4n-1)\pi}{2}[/tex]

To find x-intercept of f(x):

For x-intercept, y=0

f(x)=[tex]e^{-3x} sin(x)[/tex]

y=[tex]e^{-3x} sin(x)[/tex]

[tex]e^{-3x} sin(x)=0[/tex]

Hence, [tex]e^{-3x}[/tex] is always greater than zero.

Therefore,[tex]sin(x)=0[/tex]

x=[tex]n\pi[/tex]

Thus,

The x-intercept of f(x) is at x=[tex]n\pi[/tex]

Ver imagen mintuchoubay