Answer:
Circumference of circle B,
[tex]C_{b}=4\ m[/tex]
Step-by-step explanation:
Given:
Let,
Circumference of circle A be Cₐ =2 2/3
∴ [tex]C_{a} =2\frac{2}{3} \\C_{a} =\frac{8}{3}[/tex]
Radius of circle A be, rₐ
Radius of circle B be, [tex]r_{b}=1\frac{1}{2}\times r_{a}=\frac{3}{2}\times r_{a}[/tex]
To Find:
Circumference of circle B,
[tex]C_{b}=?[/tex]
Solution:
We have Formula for Circumference.
[tex]Circumference=2\pi \times radius[/tex]
∴ Cₐ = 2 × π × rₐ
∴ [tex]\frac{8}{3}=2\pi\times r_{a}\\ \\\therefore r_{a}=\frac{4}{3\pi}[/tex]
Now
Circumference of circle B,
[tex]C_{b}=2\pi\times r_{b}\\\\But\ r_{b}=\frac{3}{2}r_{a}\\ \\\therefore C_{b}=2\pi\times \frac{3}{2}r_{a}\\\\Put\ r_{a}=\frac{4}{3\pi} \\\\\therefore C_{b}=2\pi\times \frac{3}{2}\times \frac{4}{3\pi}\\\\\\\therefore C_{b}=4\ m[/tex]
Therefore, Circumference of circle B,
[tex]C_{b}=4\ m[/tex]