Water, which we can treat as ideal and incompressible, flows at 12 m/s in a horizontal pipe with a pressure of 3.0 × 10^4 Pa.
If the pipe widens to twice its original radius, what is the pressure in the wider section?

Respuesta :

Answer:

9.8 × 10⁴Pa

Explanation:

Given:

Velocity V₁ = 12m/s

Pressure P₁ = 3 × 10⁴ Pa

From continuity equation we have

                              ρA₁V₁ = ρA₂V₂

                                 A₁V₁ = A₂V₂

making V₂ the subject of the equation;

                               [tex]V_{2} = \frac{A_{1}V_{1}}{A_{2}}[/tex]

the pipe is widened to twice its original radius,

                                r₂ = 2r₁          

then the cross-sectional area A₂ = 4A₁

                           ⇒  [tex]V_{2}= \frac{A_{1}V_{1}}{4A_{1}}[/tex]

                                  [tex]V_{2}= \frac{V_{1}}{4}[/tex]

This implies that the water speed will drop by a factor of  [tex]\frac{1}{4}[/tex] because of the increase the pipe cross-sectional area.  

 The Bernoulli Equation;

     Energy per unit volume before = Energy per unit volume after    

        p₁ + [tex]\frac{1}{2}[/tex]ρV₁²  + ρgh₁ = p₂ + [tex]\frac{1}{2}[/tex]ρV₂²  + ρgh₂  

Total pressure is constant and [tex]P_{T}[/tex] = P = [tex]\frac{1}{2}[/tex]ρV₂²ρV²  

        p₁ + [tex]\frac{1}{2}[/tex]ρV₁²  = p₂ + [tex]\frac{1}{2}[/tex]ρV₂²

Making p₂ the subject of the equation above;

        p₂ = p₁ + [tex]\frac{1}{2}[/tex]ρV₁² - [tex]\frac{1}{2}[/tex]ρV₂²

But [tex]V_{2}  = \frac{V_{1}}{4}[/tex] so,

        p₂ = p₁ + [tex]\frac{1}{2}[/tex]ρV₁² - [tex]\frac{1}{2}[/tex]ρ[tex]\frac{V_{1}^{2}}{4^{2}}[/tex]      

       p₂ = 3.0 x 10⁴ + ([tex]\frac{1}{2}[/tex] × 1000 × 12²) - ( [tex]\frac{1}{2}[/tex] × 1000 × 12²/4² )

      P₂ = 3.0 x 10⁴ + 7.2 × 10⁴ - 4.05 x 10³    

       P₂ = 9.79 × 10⁴Pa      

      P₂ = 9.8 × 10⁴Pa