Answer:
[tex]K.E.=1.97\times 10^{-21}\ J[/tex]
Explanation:
Given that:-
Pressure = [tex]6.9\times 10^5\ Pa[/tex]
The expression for the conversion of pressure in Pascal to pressure in atm is shown below:
P (Pa) = [tex]\frac {1}{101325}[/tex] P (atm)
Given the value of pressure = 43,836 Pa
So,
[tex]6.9\times 10^5\ Pa[/tex] = [tex]\frac{6.9\times 10^5}{101325}[/tex] atm
Pressure = 6.80977 atm
Volume = [tex]2.3\times 10^{-3}\ m^3[/tex] = 2.3 L ( 1 m³ = 1000 L)
n = 2 mol
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
6.80977 atm × 2.3 L = 2 mol × 0.0821 L.atm/K.mol × T
⇒T = 95.39 K
The expression for the kinetic energy is:-
[tex]K.E.=\frac{3}{2}\times K\times T[/tex]
k is Boltzmann's constant = [tex]1.38\times 10^{-23}\ J/K[/tex]
T is the temperature
So, [tex]K.E.=\frac{3}{2}\times 1.38\times 10^{-23}\times 95.39\ J[/tex]
[tex]K.E.=1.97\times 10^{-21}\ J[/tex]