Two moles of an ideal gas are placed in a container whose volume is 2.3 x 10^-3 m3. The absolute pressure of the gas is 6.9 x 10^5 Pa.
What is the average translational kinetic energy of a molecule of the gas?

Respuesta :

Answer:

[tex]K.E.=1.97\times 10^{-21}\ J[/tex]

Explanation:

Given that:-

Pressure = [tex]6.9\times 10^5\ Pa[/tex]

The expression for the conversion of pressure in Pascal to pressure in atm is shown below:

P (Pa) = [tex]\frac {1}{101325}[/tex] P (atm)

Given the value of pressure = 43,836 Pa

So,  

[tex]6.9\times 10^5\ Pa[/tex] = [tex]\frac{6.9\times 10^5}{101325}[/tex] atm

Pressure = 6.80977 atm

Volume = [tex]2.3\times 10^{-3}\ m^3[/tex] = 2.3 L ( 1 m³ = 1000 L)

n = 2 mol

Using ideal gas equation as:

PV=nRT

where,  

P is the pressure

V is the volume

n is the number of moles

T is the temperature  

R is Gas constant having value = 0.0821 L.atm/K.mol

Applying the equation as:

6.80977 atm × 2.3 L = 2 mol × 0.0821 L.atm/K.mol × T

⇒T = 95.39 K

The expression for the kinetic energy is:-

[tex]K.E.=\frac{3}{2}\times K\times T[/tex]

k is Boltzmann's constant = [tex]1.38\times 10^{-23}\ J/K[/tex]

T is the temperature

So, [tex]K.E.=\frac{3}{2}\times 1.38\times 10^{-23}\times 95.39\ J[/tex]

[tex]K.E.=1.97\times 10^{-21}\ J[/tex]