Answer:
Length of package can be = 22 inches
Step-by-step explanation:
Given:
For a package to qualify for a certain postage rate, the sum of its length and girth cannot exceed 85 inches
To find length of package when girth of package is = 63 inches
Solution:
Let length of package be = [tex]l[/tex] inches
Let girth length of package be = [tex]g[/tex] inches
Sum of length and girth of package = [tex](l+g)[/tex] inches
To qualify for a certain postage rate the sum of length and girth should not exceed 85 inches.
Thus, the inequality representing the situation can be given as:
[tex]l+g\leq 85[/tex]
We are given girth of package is = 63 inches
So, inequality to find length would be:
[tex]l+63\leq 85[/tex]
Subtracting both sides by 63.
[tex]l+63-63\leq 85-63[/tex]
[tex]l\leq 22[/tex] inches
So, length should not exceed 22 inches in order to qualify.
Thus, the maximum length of package to qualify for the postal rate must be = 22 inches