Respuesta :

Hagrid
To know if the function is odd or even, we have to substitute x with -x. If the function remains positive, that would mean the function is even. If the function is negative then the function is odd. 

A. y = sec(x) is also equal to  1/cos(x). Substitute x with -x 
1/cos(-x) =1/cos(x) = sec(x) = y  (EVEN)

B. y = sin(x) Substitute x with -x 
sin(-x) = -sin(x) = -y (ODD)

C. y= cot(x)  is also equivalent to cos(x)/sin(x) Substitute x with -x
cos(-x) / sin(-x) = cos(x)/ (-sin (x)) = - cot(x) = -y (ODD)

D. 
y = csc(x) is also equivalent to 1 / sin(x) Substitute x with -x 
1/ sin(-x) = 1/ (-sin (x))=-csc(x) =-y (ODD)  ----------> odd

Answer: y= cos x

y=sec x


Step-by-step explanation: