Respuesta :

The angle in quadrant III that has a cosine of -3/5 is obtained by calculating the arccos of 3/5 and adding 180 to answer. This gives 233.13 degrees. The cosecant of this angle is -5/4 and the tangent is calculated to be 4/3. 

Answer:

[tex]cosec\theta[/tex]=-[tex]\frac{5}{4}[/tex]

[tex]tan\theta[/tex]=[tex]\frac{4}{3}[/tex].

Step-by-step explanation:

Given, let [tex]\theta[/tex]  be the angle in the III quadrant .

[tex]cos\theta[/tex]=-[tex]\frac{3}{5}[/tex]......    (given)

In III quadrant [tex]cosec\theta[/tex] is negative  and [tex]tan\theta[/tex] is positive .

because , [tex]cosec\theta[/tex]=reciprocal of [tex]sin\theta[/tex]

it means , [tex]cosec\theta[/tex]=[tex]\frac{1}{sin\theta}[/tex]

Therefore,  first we find value of [tex]sin\theta[/tex]

 We know that

[tex]sin^2\theta=1-cos^2\theta[/tex]

∴ [tex]sin\theta=\sqrt{1-cos^2\theta}[/tex]

[tex]sin\theta=\sqrt{1-(\frac{-3}{5} )^2[/tex]

[tex]sin\theta=\sqrt{1-\frac{9}{25}}[/tex]

[tex]sin\theta=\sqrt{\frac{16} {25}[/tex]

[tex]sin\theta=\frac{-4}{5}[/tex]

Because [tex]sin\theta[/tex] lies in III quadrant and in III quadrant it is negative.

Now, we know that

[tex]tan\theta=\sqrt{sec^2\theta-1}[/tex]

therefore,  first we find [tex]sec\theta[/tex]

[tex]sec\theta=\frac{1}{cos\theta}[/tex]

[tex]sec\theta=-\frac{5}{3}[/tex]

[tex]tan\theta=\sqrt{(\frac{5}{3})^2-1[/tex]

[tex]tan\theta=\sqrt{\frac{25} {9}-1[/tex]

[tex]tan\theta=\frac{4}{3}[/tex]

Because it lies in III quadrant, therefore it take positive.

Hence,[tex]cosec\theta=-\frac{5}{4}[/tex] and [tex]tan\theta=\frac{4}{3}[/tex]