Answer:
Pressure predicted by van der waals equation is 1984.7 atm
Explanation:
Van der waal gas equation-
[tex](P+\tfrac{n^{2}a}{V^{2}})(V-nb)=nRT[/tex]
Where, P is pressure of gas , n is number of moles of gas, a is pressure correction constant, V is volume of gas, b is volume correction constant , R is gas constant and T is temperature in kelvin scale.
So, plug-in all the given values in the above equation-
[tex][P+\frac{(20.0mol)^{2}\times (3.658L^{2}.atm.mol^{-2})}{(1.0L)^{2}}][1.0L-(20.0mol\times0.04286 L.mol^{-1} )]=(20.0mol)\times (0.08206L.atm.mol^{-1}.K^{-1})\times (300.0K)[/tex]
or, [tex][P+\frac{(20.0mol)^{2}\times (3.658L^{2}.atm.mol^{-2})}{(1.0L)^{2}}][/tex]=[tex]3447.90atm[/tex]
or, P = 1984.7 atm
So, Pressure predicted by van der waals equation is 1984.7 atm