Answer:
a. V=11.84 m/s
b.x=0.052m
Explanation:
a).
Given
[tex]K=730 N/m[/tex],[tex]m=0.053kg[/tex], [tex]h=1.90m[/tex].
[tex]v_f^2=v_i^2+2*g*h[/tex]
[tex]v_i^2=2*g*h=2*9.8m/s^2*1.9m[/tex]
[tex]v_i=\sqrt{2*9.8m/s^2*1.9m}=\sqrt{37.24 m^2/s^2}[/tex]
[tex]v_i=6.1 m/s[/tex]
[tex]v_i=V*sin(31)[/tex]
[tex]V=\frac{v_i}{sin(31)}=\frac{6.1m/s}{sin(31)}[/tex]
[tex]V=11.84 m/s[/tex]
b).
[tex]K_k=\frac{1}{2}*K*x^2[/tex]
No friction on the ball so:
[tex]x^2=\frac{2*K_k}{K}[/tex]
[tex]x=\sqrt{\frac{2*0.053kg*9.8m/s^2*1.9m}{730N/m}}[/tex]
[tex]x=\sqrt{2.7x10^{-3}m^2}=0.052m[/tex]