The crate has a mass of 50 kg and the coefficient of static friction between the crate and the plane is µs =0.25.

(A)Determine the minimum horizontal force P required to hold the crate from sliding down the plane.
(B) Determine the minimum force P required to push the crate up the plane

Respuesta :

Answer:

Explanation:

Given

mass of crate [tex]m=50 kg[/tex]

Coefficient of  static Friction [tex]\mu =0.25[/tex]

Let [tex]\theta [/tex]be angle of inclination

resolving Forces along and perpendicular to plane

Force along Plane

[tex]P\cos \theta -mg\sin \theta -f_r=0[/tex]----------1

Forces perpendicular to plane

[tex]P\sin \theta +mg\cos \theta -N=0[/tex]

[tex]f_r=\mu N[/tex]

[tex]f_r=\mu (P\sin \theta +mg\cos \theta)[/tex]

Substitute the value of [tex]f_r[/tex]

[tex]P\cos \theta -mg\sin \theta -\mu (P\sin \theta +mg\cos \theta)=0[/tex]

[tex]P\left [ \cos \theta -\mu \sin \theta \right ]=mg\left [ \sin \theta +\mu \cos \theta \right ][/tex]

[tex]P=mg\cdot \frac{\sin \theta +\mu \cos \theta }{\cos \theta -\mu sin \theta }[/tex]

(b)Minimum Force require to push the crate up the Plane

i.e. Force Must act parallel to plane

Forces Along the Plane

[tex]P-mg\sin \theta -f_r=0[/tex]-------2

Forces Perpendicular to plane

[tex]mg\cos \theta -N=0[/tex]

[tex]f_r=\mu N[/tex]

[tex]f_r=\mu mg\cos \theta [/tex]

Substitute in Equation 2

[tex]P=mg\sin \theta +f_r[/tex]

[tex]P=mg(\sin \theta +\mu \cos \theta )[/tex]

Ver imagen nuuk