Respuesta :
Answer:
0.026167 rad/s²
3.1404 rad/s
[tex]a_c=8.95642g[/tex]
18.90064 seconds
Explanation:
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation
t = Time taken
g = Acceleration due to gravity = 9.8 m/s²
[tex]\theta=\omega_it+\frac{1}{2}\alpha t^2\\\Rightarrow 30\times 2\pi=0\times t+\frac{1}{2}\times \alpha\times (2\times 60)^2\\\Rightarrow \alpha=\frac{30\times 2\pi \times 2}{(2\times 60)^2}\\\Rightarrow \alpha=0.02617\ rad/s^2[/tex]
The angular acceleration is 0.026167 rad/s²
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=0+0.02617\times 2\times 60\\\Rightarrow \omega_f=3.1404\ rad/s[/tex]
The angular velocity at the end of that time is 3.1404 rad/s
Centripetal acceleration
[tex]a_c=\omega^2r\\\Rightarrow a_c=3.1404^2\times \frac{17.8}{2}\\\Rightarrow a_c=87.773\ m/s^2[/tex]
Dividing centripetal acceleration by g
[tex]\frac{a_c}{g}=\frac{87.773}{9.8}\\\Rightarrow a_c=8.95642g[/tex]
The centripetal acceleration is [tex]a_c=8.95642g[/tex]
When Centripetal acceleration is 12 g
[tex]a_c=12\times 9.8=117.6\ m/s^2[/tex]
[tex]a_c=\omega^2r\\\Rightarrow \omega=\sqrt{\frac{117.6}{\frac{17.8}{2}}}\\\Rightarrow \omega=3.63503\ rad/s[/tex]
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow t=\frac{\omega_f-\omega_i}{\alpha}\\\Rightarrow t=\frac{3.63503-3.1404}{0.02617}\\\Rightarrow t=18.90064\ s[/tex]
The time taken to reach that state if it starts at the angular speed found in part is 18.90064 seconds