Methane and oxygen react in the presence of a catalyst to form formaldehyde. In a parallel reaction, methane is oxidized to carbon dioxide and water.
CH4 + O2 → HCHO + H2O
CH4 + 2O2 → CO2 + 2H2O
The feed to the reactor contains equimolar amounts of methane and oxygen. Assume a basis of 100.0 mol feed/s.
a. How many degrees of freedom remain for the overall process?
b. The fractional conversion of methane is 0.900 and the fractional yield of formaldehyde is 0.860. What is the composition of the output stream?

Respuesta :

Answer:

[tex]y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02[/tex]

Explanation:

Hello,

a. On the attached document, you can see a brief scheme of the process. Thus, to know the degrees of freedom, we state the following unknowns:

- [tex]\xi_1[/tex] and [tex]\xi_2[/tex]: extent of the reactions (2).

- [tex]F_{O_2}^2[/tex], [tex]F_{CH_4}^2[/tex], [tex]F_{H_2O}^2[/tex], [tex]F_{HCHO}^2[/tex] and [tex]F_{CO_2}^2[/tex]: Molar flows at the second stream (5).

On the other hand, we've got the following equations:

- [tex]F_{O_2}^2=50mol/s-\xi_1-2\xi_2[/tex]: oxygen mole balance.

- [tex]F_{CH_4}^2=50mol/s-\xi_1-\xi_2[/tex]: methane mole balance.

- [tex]F_{H_2O}^2=\xi_1+2\xi_2[/tex]: water mole balance.

- [tex]F_{HCHO}^2=\xi_1[/tex]: formaldehyde mole balance.

- [tex]F_{CO_2}^2=\xi_2[/tex]: carbon dioxide mole balance.

Thus, the degrees of freedom are:

[tex]DF=7unknowns-5equations=2[/tex]

It means that we need two additional equations or data to solve the problem.

b. Here, the two missing data are given. For the fractional conversion of methane, we define:

[tex]0.900=\frac{\xi_1+\xi_2}{50mol/s}[/tex]

And for the fractional yield of formaldehyde we can set it in terms of methane as the reagents are equimolar:

[tex]0.860=\frac{F_{HCHO}^2}{50mol/s}[/tex]

In such a way, one realizes that the output formaldehyde's molar flow is:

[tex]F_{HCHO}^2=0.860*50mol/s=43mol/s[/tex]

Which is equal to the first reaction extent [tex]\xi_1[/tex], therefore, one computes the second one from the fractional conversion of methane as:

[tex]\xi_2=0.900*50mol/s-\xi_1\\\xi_2=0.900*50mol/s-43mol/s\\\xi_2=2mol/s[/tex]

Now, one computes the rest of the output flows via:

- [tex]F_{O_2}^2=50mol/s-43mol/s-2*2mol/s=3mol/s[/tex]

- [tex]F_{CH_4}^2=50mol/s-43mol/s-2mol/s=5mol/s[/tex]

- [tex]F_{H_2O}^2=43mol/s+2*2mol/s=47mol/s[/tex]

- [tex]F_{HCHO}^2=43mol/s[/tex]

- [tex]F_{CO_2}^2=2mol/s[/tex]

The total output molar flow is:

[tex]F_{O_2}+F_{CH_4}+F_{H_2O}+F_{HCHO}+F_{CO_2}=100mol/s[/tex]

Therefore the output stream composition turns out into:

[tex]y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02[/tex]

Best regards.

Ver imagen sebassandin