Respuesta :
Answer:
1.47 microvolts
Explanation:
B = Magnetic field = 1.95 T
I = Current in wire = 20.5 A
n = Number density of free electrons in copper = [tex]8.34\times 10^{28}\ /m^3[/tex]
D = Diameter of wire = 2.588 mm
A = Area = [tex]\pi \left(\frac{D}{2}\right)^2[/tex]
e = Charge of electron = [tex]1.6\times 10^{-19}\ C[/tex]
Hall voltage is given by
[tex]V_h=\frac{BID}{neA}\\\Rightarrow V_h=\frac{1.95\times 20.5\times 2.588\times 10^{-3}}{8.34\times 10^{28}\times 1.6\times 10^{-19}\pi \left(\frac{2.588\times 10^{-3}}{2}\right)^2}\\\Rightarrow V_h=1.47\times 10^{-6}\ V[/tex]
The Hall voltage is 1.47 microvolts
The hall voltage is is mathematically given as
Vh=1.47* 10^{-6} V
Hall voltage
Question Parameters:
Suppose a 1.95 T field is applied across a 10-gauge copper wire (2.588 mm in diameter) carrying a 20.5 A current
the number density of free electrons in copper is 8.34 × 1028m-3?
Generally the equation for the area is mathematically given as
A=\pi(d/2^2
Where The hall volatge is
[tex]V_h=\frac{BID}{neA}[/tex]
[tex]V_h=\frac{1.95*20.5*2.588*10^{-3}}{8.34* 10^{28}*1.6* 10^{-19}\pi *({2.588* 10^{-3}/2^2})}[/tex]
Vh=1.47* 10^{-6} V
For more information on Voltage
https://brainly.com/question/14883923