Answer:
Δ should be 0.1009
Explanation:
The change in the units volume when temperature change can be expressed as:
∆v = v0Δ
with v0 = the initial volume
with = the volumetric temperature expansion coefficient
with Δ = the change of temperature.
To calculate the final volume vf we'll get:
v = v0 + ∆ = v0(1 + Δ)
The liquid just begins to spill out if v(benzene) = :
v()(1 + Δ) = = v() (1 + Δ)
(v(cavity)-v(benzene))/(((benzene) -(copper)) = Δ
((1.22*10^-3)-(1.1*10^-3))/((1240*10^-6)-(51*10^-6)) = Δ
Δ = 0.1009
Δ should be 0.1009