Respuesta :

Answer:

OPTION B - 25

Step-by-step explanation:

We know that:

[tex]$ (a^x)^y = a^{x . y} $[/tex]

[tex]$ \frac{a^x}{a^y} = a^{x - y} $[/tex]

[tex]$ a^x . a^y = a^{x + y} $[/tex]

The given problem uses these results to arrive at the answer.

[tex]$ (5^2)^{-3} = 5^{2 . (-3)} = 5^{-6} $[/tex]

Now, [tex]$ 5^{-6 + 4} = 5^{-2} $[/tex]

Now, [tex]$ \frac{5^{-2}}{5^{-4}} = 5^{-2 -(-4)} = 5^{(-2 + 4)} = 5^2  $[/tex]

⇒ 5² = 25.

∴ The answer is 25. (Option B)