The number of calories burned at the gym is normally distributed with a mean of 425 and a standard deviation of 51. Find the Z-score for each data value.
a.)268 b.)512 c.)450

Respuesta :

Answer:

(a) -3.708

(b) 1.706

(c) 0.490

Step-by-step explanation:

The z-score of normal distribution is given as:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

(a)

Given:

Score is, [tex]x=268[/tex]

Mean value is, [tex]\mu =425[/tex]

Standard deviation is, [tex]\sigma = 51[/tex]

z-score is, [tex]z=\frac{268-425}{51}=\frac{-157}{51}=-3.078[/tex]

(b)

Given:

Score is, [tex]x=512[/tex]

Mean value is, [tex]\mu =425[/tex]

Standard deviation is, [tex]\sigma = 51[/tex]

z-score is, [tex]z=\frac{512-425}{51}=\frac{87}{51}=1.706[/tex]

(c)

Given:

Score is, [tex]x=450[/tex]

Mean value is, [tex]\mu =425[/tex]

Standard deviation is, [tex]\sigma = 51[/tex]

z-score is, [tex]z=\frac{450-425}{51}=\frac{25}{51}=0.490[/tex]