A line passes through the point , (−2,2) and has a slope of −5/2.

A line passes through the point , (2,−3) and has a slope of −5/2.

A line passes through the point , (−9,7) and has a slope of 4/3.

A line passes through the point , (2,−7) and has a slope of −5/2.

A line passes through the point , (8,−4) and has a slope of 3/4.

Please answer them all ;)


Respuesta :

Answer:

[tex]$ (y -y_1) = m(x - x_1) $[/tex]

Step-by-step explanation:

When a point and the slope of the line are given we use slope - one point form to determine the line of the equation.

                Slope and One point form: y - y₁ = m(x - x₁)

where [tex]$ (x_1,y_1) $[/tex] is the point passing through the line and

[tex]$ m $[/tex] is the slope of the line.

Point: (-2,2) Slope: [tex]$ \frac{-5}{2} $[/tex]

∴ (x₁ ,y₁) = (-2,2) & m = [tex]$ \frac{-5}{2} $[/tex]

Substituting we get:

y - 2 = [tex]$ \frac{-5}{2} (x + 2) $[/tex]

⇒ 2y - 4 = -5x - 10

⇒                                         5x + 2y + 6 = 0

Point: (2,-3) Slope: [tex]$ \frac{-5}{2} $[/tex]

y + 3 = [tex]$ \frac{-5}{2} (x - 2) $[/tex]

⇒ 2y + 6 = -5x + 10

⇒                                         5x + 2y - 4 = 0

Point: (-9,7) Slope: [tex]$ \frac{4}{3} $[/tex]

y - 7 = [tex]$ \frac{4}{3} (x + 9) $[/tex]

⇒ 3y - 21 = 4x + 36

                                       4x - 3y + 57 = 0

Point: (2,-7) Slope: [tex]$ \frac{-5}{2} $[/tex]

y + 7 = [tex]$ \frac{-5}{2} (x - 2) $[/tex]

⇒ 2y + 14 = -5x + 10

⇒                                        5x + 2y + 4 = 0

Point: (8,4) Slope: [tex]$ \frac{3}{4} $[/tex]

y + 4 = [tex]$ \frac{3}{4} (x - 8) $[/tex]

⇒ 4y + 16 = 3x - 24

⇒                                        3x - 4y -40 = 0