An Otto Cycle begins the isentropic compression processes with air at 290 K and 90 kPa. During heat addition 1000 kJ/kg of heat is added, after which the temperature is 2050 K. Using the air-standard with specific heats determined at 300 K determine:
a) the compression ratio.
b) the thermal efficiency.
c) the highest pressure in the cycle.
d) the net work out per kg of working fluid.

Respuesta :

Answer:

a)r= 7.27

b)[tex]\eta =0.54[/tex]

c)P₂=1449.21 KPa

d)W=540 KJ/kg

Explanation:

Given that

T₁= 290 K

P₁=90 KPa

Qa = 1000 KJ/kg

T₃=2050 K

For air

specific heat at constant volume Cv

Cv=0.71 KJ/kg.k

γ = 1.4

Qa= Cv ( T₃ - T₂)

Bu putting the values

1000 = 0.71 x ( 2050 - T₂)

T₂ = 641.54 K

[tex]\dfrac{T_2}{T_1}=r^{\gamma -1}[/tex]

r=Compression ratio

By putting the values

[tex]\dfrac{T_2}{T_1}=r^{\gamma -1}[/tex]

[tex]\dfrac{641.54}{290}=r^{1.4 -1}[/tex]

r= 7.27

[tex]\dfrac{P_2}{P_1}=r^{\gamma}[/tex]

By putting the values

[tex]\dfrac{P_2}{P_1}=r^{\gamma}[/tex]

[tex]\dfrac{P_2}{90}=7.27^{\gamma}[/tex]

P₂=1449.21 KPa

This is maximum pressure

The efficiency η

[tex]\eta =1-\dfrac{1}{r^{\gamma -1}}[/tex]  

[tex]\eta =1-\dfrac{1}{7.27^{1.4-1}}[/tex]

[tex]\eta =0.54[/tex]

We also know that

[tex]\eta=\dfrac{W}{Q_a}[/tex]

[tex]0.54=\dfrac{W}{1000}[/tex]

W=540 KJ/kg

This is the net work output.

Ver imagen Netta00