A lamina occupies the part of the disk x2 + y2 ≤ 49 in the first quadrant. Find the center of mass of the lamina if the density at any point is proportional to the square of its distance from the origin.

Respuesta :

Answer with Explanation:

We are given that a lamina occupies the part of the disk

[tex]x^2+y^2\leq 49[/tex] in the first quadrant.

Radius is a distance between the center of circle and the point on boundary of circle.

By comparing the equation of circle

[tex](x-h)^2+(y-k)^2=r^2[/tex]

We have radius =7 and center=(0,0)

[tex]\rho\propto r^2[/tex] Where r= Distance between origin and the point on boundary of circle

Density function [tex]\rho (x,y)=kr^2=K(x^2+y^2)[/tex]

Where K= Proportionality constant

[tex]r=\sqrt{x^2+y^2}[/tex]

[tex]x=rcos\theta, y=rsin\theta[/tex]

Radius varies from 0 to 7 and  angle([tex]\theta[/tex]) varies from 0 to [tex]\frac{\pi}{2}[/tex].

Mass of the lamina=m=[tex]\int_{0}^{\frac{\pi}{2}}\int_{0}^{7}kr^2\cdot rdrd\theta[/tex]

[tex]m=k\int_{0}^{\frac{\pi}{2}}[\frac{r^4}{4}]^{7}_{0} d\theta [/tex]

[tex]m=k\int_{0}^{\frac{\pi}{2}}\frac{2401}{4} d\theta[/tex]

[tex]m=\frac{2401k}{4}\times \frac{\pi}{2}[/tex]

[tex]m=\frac{2401\pi}{8}[/tex]

Its first moments is given by

[tex]M_x=\int \int_{region} y\cdot \rho (x,y) dx dy[/tex]   ([tex]dxdy=rdr d\theta[/tex])

[tex]M_x=\int_{0}^{\frac{\pi}{2}}\int_{0}^{7}r sin\theta \cdot kr^3 dr d\theta[/tex]

[tex]M_x=\int_{0}^{\frac{\pi}{2}}\int_{0}^{7} kr^4 sin\theta dr d\theta[/tex]

[tex]M_x=K\frac{16807}{5}[-cos\theta]^{\frac{\pi}{2}}_{0}[/tex]

[tex]M_x=\frac{16807k}{5}(0+1)=\frac{16807k}{5}[/tex]   ([tex]cos\frac{\pi}{2}=0, cos 0=1[/tex])

[tex]M_y=\int\int_{region}x \cdot \rho(x, y) dx dy [/tex]

[tex]M_y=\int_{0}^{\frac{\pi}{2}}\int_{0}^{7} kr^4 cos\theta drd\theta[/tex]

[tex]M_y=\frac{16807}{5}[sin\theta]^{\frac{\pi}{2}}_{0}[/tex]

[tex]M_y=\frac{16807k}{5}(sin\frac{\pi}{2}-sin0)[/tex]

[tex]M_y=\frac{16807k}{5}(1-0)=\frac{16807k}{5}[/tex]  ([tex] sin\frac{\pi}{2}=1, sin 0=0[/tex])

Center of mass is given by

[tex]m_x=\frac{M_x}{m}=\frac{\frac{16807}{5}}{\frac{2401k\pi}{8}}=\frac{56}{5\pi}[/tex]

[tex]m_y=\frac{M_y}{m}=\frac{\frac{16807k}{5}}{\frac{2401k\pi}{8}}=\frac{56}{5\pi}[/tex]

Hence, the center of mass of the lamina=([tex]\frac{56}{5\pi}, \frac{56}{5\pi}[/tex])