Respuesta :

Answer:

The perimeter of triangle MNP is 130 units

Step-by-step explanation:

we know that

The perimeter of triangle MNP is equal to

[tex]P=MN+NP+MP[/tex]

In this problem

step 1

1) [tex]MP=2(QR)[/tex]

Because Q is the midpoint of segment MN and R is the midpoint of segment NP

so

[tex]MP=2(25)=50\ units[/tex]

step 2

2) [tex]NP=2(QS)[/tex]

Because Q is the midpoint of segment MN and S is the midpoint of segment MP

so

[tex]NP=2(22)=44\ units[/tex]

step 3

3) [tex]MN=2(RS)[/tex]

Because R is the midpoint of segment NP and S is the midpoint of segment MP

so

[tex]5x-34=2(x+4)[/tex]

solve for x

[tex]5x-34=2x+8[/tex]

[tex]5x--2x=34+8[/tex]

[tex]3x=42[/tex]

[tex]x=14[/tex]

so

[tex]MN=5(14)-34=36\ units[/tex]

step 4

Find the perimeter

[tex]P=MN+NP+MP[/tex]

substitute the values

[tex]P=36+44+50=130\ units[/tex]