The probability distribution for a
random variable x is given in the table.
Probability
Find the probability that -5 <x<5​

The probability distribution for arandom variable x is given in the tableProbabilityFind the probability that 5 ltxlt5 class=

Respuesta :

Answer:

.3

Step-by-step explanation:

The probability distribution in the second row simply shows the probabilities for each number in the first row.

To find the probability that x is between -5 and 5, you can add the probabilities -5 < x < 5.

P(-5) = 0.15

P(0) = 0.05

P(5) = 0.1

0.15 + 0.05 + 0.1 = 0.3

The probability that -5 < x < 5 is given by 0.05.

What is Probability?

Probability is the measure of the likliness of an event to happen.

The probability has a range from 0 to 1, 0 denotes uncertainty and 1 indicates certainty.

The probability is calculated by determining the ratio of the favorable outcomes to total outcomes.

The probability distribution for a random variable x is given in the table,

The probability that -5 < x < 5 is given by

= P( x < 5) - P( x ≤ -5)

P ( x < 5) = P ( x = 0) +P( x = -5) + P( x = -10)

P ( x < 5) = 0.05 + 0.15 + 0.20

P ( x < 5) = 0.40

P( x ≤ -5) = P( x = -5) + P( x = -10)

P( x ≤ -5) = 0.15 + 0.20

P( x ≤ -5) = 0.35

The probability that -5 < x < 5 is given by

= 0.40 - 0.35

= 0.05

To know more about Probability

https://brainly.com/question/11234923

#SPJ5