Respuesta :

Answer:

The rate of interest for the investment is 3.8

Step-by-step explanation:

Given as :

The Principal = 1500 unit

The Amount after 3 years = 1680  unit

The Time period = 3 years

Let The annual rate of interest = R %

From compounded method

Amount = Principal × [tex](1+\frac{Rate}{100})^{Time}[/tex]

Or, 1680 = 1500 × [tex](1+\frac{Rate}{100})^{3}[/tex]

Or, [tex]\frac{1680}{1500}[/tex] = [tex](1+\frac{Rate}{100})^{3}[/tex]

Or, 1.12 =  [tex](1+\frac{Rate}{100})^{3}[/tex]

Or, [tex](1.12)^{\frac{1}{3}}[/tex] = 1 + [tex]\frac{R}{100}[/tex]

Or, 1.038 = 1 + [tex]\frac{R}{100}[/tex]

So, 1.038 - 1 = [tex]\frac{R}{100}[/tex]  

∴  0.038 × 100 = R

I.e R = 3.8

Hence The rate of interest for the investment is 3.8   Answer

Answer: c 4%

Step-by-step explanation: