Respuesta :
Answer:
The rate of interest for the investment is 3.8
Step-by-step explanation:
Given as :
The Principal = 1500 unit
The Amount after 3 years = 1680 unit
The Time period = 3 years
Let The annual rate of interest = R %
From compounded method
Amount = Principal × [tex](1+\frac{Rate}{100})^{Time}[/tex]
Or, 1680 = 1500 × [tex](1+\frac{Rate}{100})^{3}[/tex]
Or, [tex]\frac{1680}{1500}[/tex] = [tex](1+\frac{Rate}{100})^{3}[/tex]
Or, 1.12 = [tex](1+\frac{Rate}{100})^{3}[/tex]
Or, [tex](1.12)^{\frac{1}{3}}[/tex] = 1 + [tex]\frac{R}{100}[/tex]
Or, 1.038 = 1 + [tex]\frac{R}{100}[/tex]
So, 1.038 - 1 = [tex]\frac{R}{100}[/tex]
∴ 0.038 × 100 = R
I.e R = 3.8
Hence The rate of interest for the investment is 3.8 Answer