A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. Suppose a pulsar has a period of rotation of T = 0.0820 s that is increasing at the rate of 9.84 x 10-7 s/y. (a) What is the pulsar's angular acceleration alpha? (b) If alpha is constant, how many years from now will the pulsar stop rotating? (c) Suppose the pulsar originated in a supernova explosion seen 582 years ago. Assuming constant alpha, find the initial T.

Respuesta :

Answer:

a).[tex]a_p=-2.39x10^{-12} rad/s^2[/tex]

b).[tex]t=1016298.8 years[/tex]

c).[tex]T_i=80.58x10^{-3}s[/tex]

Explanation:

a).

The acceleration for definition is the derive of the velocity so:

[tex]a_p=\frac{dw}{dt}[/tex]

[tex]w=\frac{2\pi}{t}[/tex]

[tex]a_p=\frac{dw}{dt}=-\frac{2\pi}{t^2}*\frac{dT}{dt}[/tex]

[tex]dT=0.0808s[/tex]

[tex]dt=1 year*\frac{365d}{1year} \frac{24hr}{1d} \frac{60minute}{1hr} \frac{60s}{1minute}=31.536x10^{6}s[/tex]

Replacing

[tex]a_p=-\frac{2\pi}{0.082s^2}*\frac{9.84x10^{-7}}{31.536x10^{6}s}= -2.39x10^{-12} rad/s^2[/tex]

b).

If the pulsar will continue to decelerate at this rate, it will  stop rotating at time:

[tex]t=\frac{w}{a_p}[/tex]

[tex]w=\frac{2\pi }{t}=\frac{2\pi }{0.0820s}=76.62 rad/s[/tex]

[tex]t=\frac{76.62 rad/s}{2.39x10^{-12}rad/s^2}= 3.2058x10^{13}s[/tex]

[tex]t=1016298.8 years[/tex]

c).

582 years ago to 2019

1437

[tex]T_i=0.0820-9.84x10^{-7}*1437)=80.58x10^{-3}s[/tex]