Answer:
Part a)
[tex]v = -(8.33\hat j + 9.33\hat i)\times 10^6 m/s[/tex]
Part b)
[tex]E = 4.4 \times 10^{-13} J[/tex]
Explanation:
As per momentum conservation we know that there is no external force on this system so initial and final momentum must be same
So we will have
[tex]m_1v_1 + m_2v_2 + m_3v_3 = 0[/tex]
[tex](5 \times 10^{-27})(6 \times 10^6\hat j) + (8.4 \times 10^{-27})(4 \times 10^6\hat i) + (3.6 \times 10^{-27}) v = 0[/tex]
[tex](30\hat j + 33.6\hat i)\times 10^6 + 3.6 v = 0[/tex]
[tex]v = -(8.33\hat j + 9.33\hat i)\times 10^6 m/s[/tex]
Part b)
By equation of kinetic energy we have
[tex]E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2[/tex]
[tex]E = \frac{1}{2}(5 \times 10^{-27})(6\times 10^6)^2 + \frac{1}{2}(8.4 \times 10^{-27})(4 \times 10^6)^2 + \frac{1}{2}(3.6 \times 10^{-27})(8.33^2 + 9.33^2) \times 10^{12}[/tex]
[tex]E = 9\times 10^{-14} + 6.72 \times 10^{-14} + 2.82\times 10^{-13} [/tex]
[tex]E = 4.4 \times 10^{-13} J[/tex]