An electron is moving east in a uniform electric field of 1.47 {\rm N/C} directed to the west. At point A, the velocity of the electron is 4.55×105 {\rm m/s} pointed toward the east. What is the speed of the electron when it reaches point B, which is a distance of 0.355 {\rm m} east of point A?
A proton is moving in the uniform electric field of part A. At point A, the velocity of the proton is 1.95×104 {\rm m/s}, again pointed towards the east. What is the speed of the proton at point B?

Respuesta :

Answer:

a) [tex]v = 6.25\times 10^{5} m/s[/tex]

b) [tex]v = 1.73\times 10^{4} m/s[/tex]

Explanation:

Given data:

Electric field = 1.47 N/C

velocity of electron is [tex]4.55\times 10^5 m/s[/tex]

distance of point b from point A is 0.55 m

we know that acceleration of particle is given as

a) for electron

[tex]a =\frac{q E}{m}[/tex]

[tex]a = \frac{1.6\times 10^{-19} \times 1.47}{9.1\times 10^{-31}}[/tex]

[tex]a = 2.58\times 10^{11} m/s^2[/tex]

from equation of motion we have

[tex] v^2 = u^2 + 2aS[/tex]

      [tex] = 20.7025 \times 10^{10} + 2\times 2.58\times 10^{11} \times 0.355[/tex]

[tex]v = 6.25\times 10^{5} m/s[/tex]

b) for proton

[tex]a = \frac{1.6\times 10^{-19} \times -1.47}{1.6\times 10^{-27}}[/tex]

[tex]a = -1.41\times 10^{8} m/s^2[/tex]

from equation of motion we have

[tex] v^2 = u^2 + 2aS[/tex]

       [tex]= 3.8025 \times 10^{8} - 2\times 1.41\times 10^{8} \times 0.355[/tex]

[tex]v = 1.73\times 10^{4} m/s[/tex]

a. The speed of the electron when it reaches point B is [tex]v = 6.25 \times 10^{5} m/s[/tex]

b. The speed of the proton at point B is [tex]v = 1.73 \times 10^{4} m/s[/tex]

Calculation of the speed of electron & proton:

(a) The speed of the electron should be

[tex]a = qE \div m\\\\a = \frac{1.6\times 10^{-19}\times 1.47}{9.1 \times 10^{-31}} \\\\a = 2.58 \times 10^{11} m/s^2[/tex]

Now here we applied the equation of motion that should be

[tex]v^2 = u^2 + 2as\\\\= 20.7025 \times 10^{10} + 2\times 2.58 \times 10^{11}\times 0.355\\\\v = 6.25 \times 10^{5} m/s[/tex]

b.  The speed of the proton should be

[tex]a = \frac{1.6\times 10^{-19}\times -1.47}{1.6 \times 10^{-27}} \\\\a = -1.41 \times 10^{8} m/s^2[/tex]

Now here we applied the equation of motion that should be

[tex]v^2 = u^2 + 2as\\\\= 3.8025 \times 10^{8} + 2\times 1.41 \times 10^{8}\times 0.355\\\\v = 1.73 \times 10^{4} m/s[/tex]

Learn more about electron here: https://brainly.com/question/24507731