Answer with Step-by-step explanation:
We are given that three vectors
[tex]v_1=(2,-1,0,3), v_2=(1,2,5,-1),v_3=(7,-1,5,8)[/tex]
We have to determine the given vectors are linearly independent in [tex]R^4[/tex] and write [tex]v_1[/tex] as linear combination of other two vectors if the vectors are dependent.
To find the linearly dependent we will use matrix.
[tex]\left[\begin{array}{cccc}2&-1&0&3\\1&2&5&-1\\7&-1&5&8\end{array}\right][/tex]
If m=Number of rows, n=Number of columns then,
Rank of matrix=min(m,n)
Rank of matrix=min(3,4)
Rank of matrix=3
Dimension of [tex]R^4=4[/tex]
Rank[tex]\neq dim[/tex]
Therefore, it is linearly dependent .
[tex]v_1=(2,-1,0,3)=-\frac{1}{3}(1,2,5,-1)+\frac{1}{3}(7,-1,5,8)[/tex]