Answer:
1.[tex]v=\sqrt{2*h*g-2*u_K*g*L*cos*(arcsin(\frac{h}{L} ))}[/tex]
2. [tex]v=9.33m/s[/tex]
Explanation:
1.
Kinetic energy and potential energy describe the motion also the small push means that initial kinetic energy is considered zero so:
Work done=Potential energy-Kinetic energy
[tex]W_k=E_p-E_k[/tex]
[tex]u_K*m*g*d=m*g*h-\frac{1}{2}*m*v^2[/tex]
[tex]d=L*cos*(arcsin(\frac{h}{L} ))[/tex]
[tex]u_K*g*L*cos*(arcsin(\frac{h}{L} ))=g*h-\frac{1}{2}*v^2[/tex]
Solve to v
[tex]v^2=2*h*g-2*u_K*g*L*cos*(arcsin(\frac{h}{L} ))[/tex]
[tex]v=\sqrt{2*h*g-2*u_K*g*L*cos*(arcsin(\frac{h}{L} ))}[/tex]
2.
Replacing the given: to find speed at the bottom
[tex]v=\sqrt{2*10m*9.8m/s^2-2*0.07*9.8m/s^2*80m*cos(arcsin(\frac{10m}{80m}))}[/tex]
[tex]v=\sqrt{87.1m^2/s^2}[/tex]
[tex]v=9.33m/s[/tex]