Mary is an avid game show fan and one of the contestants on a popular game show. She spins the wheel and after 1.5 revolutions, the wheel comes to rest on a space that has a $1,500.00 prize. If the initial angular speed of the wheel is "3.60" rad/s, find the angle through which the wheel has turned when the angular speed is "2.50" rad/s.

Respuesta :

Answer:

4.87971 rad/s

Explanation:

[tex]\omega_f[/tex] = Final angular velocity

[tex]\omega_i[/tex] = Initial angular velocity

[tex]\alpha[/tex] = Angular acceleration

[tex]\theta[/tex] = Angle of rotation

Equation of rotational motion

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \alpha=\frac{\omega_f^2-\omega_i^2^2}{2\theta}\\\Rightarrow \alpha=\frac{0^2-3.6^2}{2\times 2\pi \times 1.5}\\\Rightarrow \alpha=-0.68754\ rad/s^2[/tex]

The angular acceleration is -0.68754 rad/s²

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2^2}{2\alpha}\\\Rightarrow \theta=\frac{2.5^2-3.6^2}{2\times -0.68754}\\\Rightarrow \theta=4.87971\ rad[/tex]

The angle through which the wheel has turned is 4.87971 rad