contestada

Suppose that an ion source in a mass spectrometer produces doubly ionized gold ions (Au2+), each with a mass of 3.27 × 10-25 kg. The ions are accelerated from rest through a potential difference of 1.90 kV. Then, a 0.540-T magnetic field causes the ions to follow a circular path. Determine the radius of the path.

Respuesta :

Answer:

Radius of the path is [tex]163.16\times 10^{-6}m[/tex]  

Explanation:

It is given that gold is doubly ionized

Charge [tex]q=2e=2\times 1.6\times 10^{-19}=3.2\times 10^{-19}C[/tex]

Mass of the each ion = [tex]=3.27\times 10^{-25}kg[/tex]

So total mass m = [tex]=2\times 3.27\times 10^{-25}=6.54\times 10^{-25}kg[/tex]

Potential difference V = 1.9 KV

Magnetic field B = 0.540 T

We know that [tex]\frac{1}{2}mv^2=qV[/tex]

[tex]\frac{1}{2}\times 6.54\times 10^{-25}\times v^2=3.2\times 10^{-19}\times 1900[/tex]

[tex]v=43.11\times 10^3m/sec[/tex]

We have to find the radius of the path

We know that radius of the path is given by

[tex]r=\frac{mv}{qB}=\frac{6.54\times 10^{-25}\times 43.11\times 10^3}{3.2\times 10^{-16}\times 0.540}=163.16\times 10^{-6}m[/tex]