Answer:
1269.98883 N or 285.51907 lbf
Explanation:
L = Length of tendon = 25 cm
[tex]\Delta L[/tex] = Change in tendon length
r = Radius of tendon = 5/2 = 2.5 mm = 0.0025 m
A = Area = [tex]\pi r^2[/tex]
T = Tension
Y = Young's modulus = [tex]1.47\times 10^9\ N/m^2[/tex]
Young's modulus is given by
[tex]Y=\frac{\frac{T}{A}}{\frac{\Delta L}{L}}=\frac{TL}{\Delta LA}\\\Rightarrow T=\frac{Y\Delta LA}{L}\\\Rightarrow T=\frac{Y\Delta L\pi r^2}{L}\\\Rightarrow T=\frac{1.47\times 10^9\times (0.261-0.25)\times \pi 0.0025^2}{0.25}\\\Rightarrow T=1269.98883\ N[/tex]
Converting to lbf
[tex]1\ N=\frac{1}{4.448}\ lbf[/tex]
[tex]1269.98883\ N=1269.98883\times \frac{1}{4.448}\ lbf=285.51907\ lbf[/tex]
The tension in the tendons is 1269.98883 N or 285.51907 lbf