Respuesta :

Answer: 100 [tex]x^{2}[/tex] - 49 [tex]y^{2}[/tex]

Step-by-step explanation:

Answer:

[tex]100 x^{2}-49 y^{2}[/tex] can be written in the difference of squares.

Option: D

Step-by-step explanation:

We know that [tex]a^{2}-b^{2}=(a-b)(a+b)[/tex]

Take the equation [tex]100 x^{2}-49 y^{2}[/tex] and can be written as follows.

[tex]\left(100 x^{2}-49 y^{2}\right)=\left\{(10 x)^{2}-(7 y)^{2}\right\}[/tex]

100 is the square of 10

49 is the square of 7

[tex]x^{2}[/tex] is the square of x

[tex]y^{2}[/tex] is the square of y

Thus we can write the [tex]100 x^{2}-49 y^{2}[/tex] as the difference of squares.

[tex]\left(100 x^{2}-49 y^{2}\right)=\left\{(10 x)^{2}-(7 y)^{2}\right\}[/tex]

By using the formula [tex]a^{2}-b^{2}=(a-b)(a+b)[/tex] we can write  [tex]\left\{(10 x)^{2}-(7 y)^{2}\right\}[/tex] as

[tex]\left\{(10 x)^{2}-(7 y)^{2}\right\}[/tex] [tex]=(10 x-7 y)(10 x+7 y)[/tex]