Triangle ABC has vertices at A(4, 2), B(1, 2), and C(4, 6) in the coordinate plane. The triangle will be rotated 270∘ counterclockwise around the point (-5, -7) and then rotated over = 0. What are the vertices of triangle A'B'C'?


A. A'(14, 2), B'(14, -1), C'(18, 2)


B. A'(0, 8), B'(0, 11), C'(-4, 8)


C. A'(-4, -16), B'(-4, -13), C'(-8, -16)


D. A'(4, 16), B'(4, 13), C'(8, 16)

Respuesta :

Answer:

D.A'(4,16),B'(4,13),C'(8,16)

Step-by-step explanation:

We are given that triangle ABC has vertices at A(4,2),B(1,2) and C(4,6) in the coordinate plane.

First we change the given points

[tex]A_1=(4+5,2+7)=(9,9)[/tex]

[tex]B_1=(1+5,2+7)=(6,9)[/tex]

[tex]C_1=(4+5,6+7)=(9,13)[/tex]

The rule of transformation of 270 degree rotation counterclockwise about origin is given by

[tex](x,y)\rightarrow (y,-x)[/tex]

After rotation 270 degrees about origin

Then, [tex]A_2=(9,-9)[/tex]

[tex]B_2=(9,-6)[/tex]

[tex]C_2=(13,-9)[/tex]

Apply the rule

[tex](x,y)\rightarrow (x-5, y-7)[/tex]

[tex]A_3=(4,-16)[/tex]

[tex]B_3=(4,-13)[/tex]

[tex]C_3=(8,-16)[/tex]

Hence, the coordinates of triangle ABC after 270 degrees counterclockwise rotation around (-5,-7) is given by

[tex]A_3=(4,-16),B_3=(4,-13),C_3=(8,-16)[/tex]

After rotation y=0

The rule of transformation about y=0  is given by

[tex](x,y)\rightarrow (x,-y)[/tex]

Apply this rule then we get

[tex]A'=(4,16)[/tex]

[tex]B'=(4,13)[/tex]

[tex]C'=(8,16)[/tex]

Hence, option D is true.

Answer:

ITS D

Step-by-step explanation: