The function f(x) = 1/2 x + 3/2 is used to complete this table.
table.


Which statements are true of the given function? Check all that apply.

f(-1/2) = -2
f(0) = 3/2
f(1) = –1
f(2) = 1
f(4) = 7/2

The function fx 12 x 32 is used to complete this table table Which statements are true of the given function Check all that apply f12 2 f0 32 f1 1 f2 1 f4 72 class=

Respuesta :

Answer:

a) f(-1/2)  = -2 is NOT TRUE.

b)  f(0)  =3/2 is  TRUE.

c)   f(1)  = -1 is NOT TRUE.

d)   f(2)  = 1 is NOT TRUE.

e)   f(4)  = 7/2  is  TRUE.

Step-by-step explanation:

Here, the given function is  [tex]f(x) = (\frac{1}{2}) x+\frac{3}{2}[/tex]

Now, checking for each values for the given function:

a) Putting x  = (-1/2):

 [tex]f(\frac{-1}{2} ) = (\frac{1}{2})(\frac{-1}{2} ) +\frac{3}{2}   = \frac{-1}{4}  + (\frac{3}{2} )\\\implies f(x) = \frac{-1 + 6}{4}  = (\frac{5}{4} )[/tex]

and (5/4) ≠  -2

Hence, f(-1/2)  = -2 is NOT TRUE.

b)Putting x  = 0 :

[tex]f(0) = (\frac{1}{2})(0 ) +\frac{3}{2} = (\frac{3}{2} )[/tex]

Hence, f(0)  =3/2 is  TRUE.

c) Putting x  = 1:

[tex]f(1 ) = (\frac{1}{2})(1 ) +\frac{3}{2}   = \frac{1}{2}  + (\frac{3}{2} )\\\implies f(x) = \frac{3 + 1}{2}  = (\frac{4}{2} )   = 2\implies 2   \neq -1[/tex]

Hence, f(1)  = -1 is NOT TRUE.

d)Putting x  = 2:  

[tex]f(2 ) = (\frac{1}{2})(2 ) +\frac{3}{2}   = 1+ (\frac{3}{2} )\\\implies f(x) = \frac{2 + 3}{2}  = (\frac{5}{2} )[/tex]

and (5/2) ≠  1

Hence, f(2)  = 1 is NOT TRUE.

e)Putting x  = 4:

 [tex]f(4 ) = (\frac{1}{2})(4 ) +\frac{3}{2}   = 2  + (\frac{3}{2} )\\\implies f(x) = \frac{4 + 3}{2}  = (\frac{7}{2} )[/tex]

Hence, f(4)  = 7/2  is  TRUE.

Answer:

B and E

Step-by-step explanation:

Answer on edge