Answer:
The current would be doubled.
Explanation:
As per Ohm's Law:
We know,
V=[tex]I\times[/tex][tex]R[/tex]
where,
V=Voltage across the substance,
I-current through the substance,
R-Resistance of the substance.
Let initially,
V=[tex]V_{0};[/tex][tex]I=I_{0}[/tex];[tex]R=R_{0}[/tex]
Using Ohm's law,we get,
[tex]V_{0} =I_{0}R_{0}[/tex]
[tex]I_{0} =\frac{V_{0} }{R_{0} }[/tex] (Equation 1)
Afterwards it is given that Voltage is same and Resistance is halved.
Therefore (assuming final voltage,current and resistance are [tex]V_{f},I_{f},R_{f}[/tex] respectively)
[tex]V_{f}=V_{0};[tex]R_{f}=\frac{R_{0} }{2}[/tex][/tex];
Using Ohm's law,we get
[tex]V_{f}=I_{f}R_{f}[/tex]
[tex]V_{0}=I_{0}\times\frac{R_{0} }{2}[/tex]
[tex]I_{f}=\frac{2V_{0} }{R_{0} }[/tex]
Using Equation 1, we get,
[tex]I_{f} = 2I_{0}[/tex]
Therefore the current is doubled.